
Journal of Computational Physics 207 (2005) 639–659

www.elsevier.com/locate/jcp
Boundary conditions for the upwind finite difference Lattice
Boltzmann model: Evidence of slip velocity in

micro-channel flow

Victor Sofonea a,b,*, Robert F. Sekerka b

a Laboratory for Numerical Simulation and Parallel Computing in Fluid Mechanics, Center for Fundamental and Advanced

Technical Research, Romanian Academy, Bd. Mihai Viteazul 24, RO-300223 Timis�oara, Romania
b Department of Physics, Carnegie Mellon University, 6416 Wean Hall, Pittsburgh, Pennsylvania 15213, USA

Received 15 April 2004; received in revised form 1 November 2004; accepted 2 February 2005
Abstract

We conduct a systematic study of the effect of various boundary conditions (bounce back and three versions of dif-

fuse reflection) for the two-dimensional first-order upwind finite difference Lattice Boltzmann model. Simulation of

Couette flow in a micro-channel using the diffuse reflection boundary condition reveals the existence of a slip velocity

that depends on the Knudsen number e = k/L, where k is the mean free path and L is the channel width. For walls mov-

ing in opposite directions with speeds ±uw, the slip velocity satisfies uslip = 2euwall/(1 + 2e). In the case of Poiseuille flow

in a micro-channel, the slip velocity is found to depend on the lattice spacing ds and Knudsen number e to both first and

second order. The best results are obtained for diffuse reflection boundary conditions that allow thermal mixing at a

wall located at half lattice spacing outside the boundary nodes.
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1. Introduction

Because of their intrinsic kinetic nature, Lattice Boltzmann (LB) models [1–4] are effective for problems

where both mesoscopic dynamics and microscopic statistics become important, as in the case of micro-

channel flows [5]. When the magnitude of the mean free path k of fluid molecules becomes comparable
to the channel width L (which means the Knudsen number e = k/L exceeds 0.01), the slip velocity at the

flow boundary (i.e., the channel walls) becomes noticeable. Since the continuum hypothesis is no longer

valid when the Knudsen number becomes too large, the use of macroscopic equations such as the Na-

vier–Stokes equation becomes questionable, even if associated with appropriate slip and temperature jump

conditions at the wall surface [5]. For such problems, the use of LB models provides a promising alternative

[6,7]; however, the results of computer simulations may be strongly affected by the boundary conditions

imposed at the channel wall.

The purpose of the present paper is to investigate the influence of various procedures for handling
boundary conditions in finite difference Lattice Boltzmann (FDLB) models on the apparent value of the

slip velocity. FDLB models [8–13] are more general than standard LB models like the D2Q9 one [14] where

the propagation speed depends on the mass of the fluid particles and also is related to the lattice spacing

[15–17]. FDLB models allow to incorporate different propagation speeds on the same lattice, which is espe-

cially important in the case of multicomponent fluid system whose particles have different masses or in the

case of multispeed thermal models [18].

We first give a general description of isothermal LB models in Section 2. For tractability in this paper we

will restrict ourselves to the upwind finite difference LB model, which is introduced in Section 3; other
FDLB models, like those discussed in [13], may be handled in a similar way. Although of first order, the

upwind scheme is still preferable instead of higher order FDLB models (like the centered one, the Lax–

Wendroff or the second-order upwind scheme) because of its simplicity and good numerical stability when

large values of the density gradient are present in the fluid [19]. The upwind FDLB model will be used to

simulate isothermal flow (Couette and Poiseuille) of a single component fluid in a 2D micro-channel, in the

incompressible limit (i.e., low Mach number). The appropriate boundary conditions for the distribution

functions are introduced in Section 4 while the problem of the slip velocity in channel flow is briefly dis-

cussed in Section 5. Simulation results, as well as the effect of the lattice spacing and the Knudsen number
on the slip velocity, are discussed further in Section 6.
2. General description of LB models

Finite difference Lattice Boltzmann models [13,8–12] are derived from the continuous Boltzmann equa-

tion with the collision term in the Bhatnagar–Gross–Krook (BGK) approximation [20,21]
o

ot
þ v � r þ F

m
� rv

� �
f ðx; v; tÞ ¼ � 1

s
f ðx; v; tÞ � f eqðx; v; tÞ½ �; ð1Þ
where s is the relaxation time and F = ma is the external force acting on a fluid particle whose mass is m. In
a D-dimensional space, the equilibrium distribution function of an ideal gas is the well-known Maxwell–

Boltzmann distribution
f eqðx; v; tÞ ¼ nðx; tÞ m
2pkBT

� �D=2

e
� m

2kBT v�uðx;tÞ½ �2
; ð2Þ
where
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n � nðx; tÞ ¼
Z

f eqðx; v; tÞdDv ð3Þ
is the local number density and
u � uðx; tÞ ¼ 1

nðx; tÞ

Z
vf eqðx; v; tÞdDv ð4Þ
is the local velocity.

For a system not too far from its equilibrium state, we may suppose
rvf ðx; v; tÞ ’ rvf eqðx; v; tÞ ¼ � m
kBT

v� uðx; tÞ½ �f eqðx; v; tÞ: ð5Þ
After introducing expression (5) in Eq. (1), we get the following form of the Boltzmann equation:
otf ðx; v; tÞ þ v � rf ðx; v; tÞ ¼ 1

kBT
F � v� uðx; tÞ½ �f eqðx; v; tÞ � 1

s
f ðx; v; tÞ � f eqðx; v; tÞ½ �; ð6Þ
which provides the starting point for any FDLB model.
The central idea of Lattice Boltzmann models is the discretization of velocity space [1–4,15,16]. The

velocity space is restricted to a finite set feig; i ¼ 0; 1; . . . ;N with new distribution functions fi(x, t) that

replace f(r,v, t)dDv for v = ei. To solve the resulting equations, one usually discretizes the physical space

and uses nodes x of a lattice L. After discretization of both v and x, the BGK Boltzmann equation (6)

becomes a system of N equations
otfiðx; tÞ þ ei � rfiðx; tÞ ¼
1

kBT
F � ei � uðx; tÞ½ �f eq

i ðx; tÞ � 1

s
fiðx; tÞ � f eq

i ðx; tÞ½ � ði ¼ 0; 1; . . .NÞ: ð7Þ
The distribution function fi(x, t) is the probability of finding at node x 2 L a particle of mass m having the

velocity ei. When using a two-dimensional (2D) square lattice (like the one shown in Fig. 1, which refers to

the so-called D2Q9 model [14]), N ¼ 8 and the velocities ei are given by
ei ¼

0 ði ¼ 0Þ;
cos ði�1Þp

2
; sin ði�1Þp

2

h i
c ði ¼ 1; . . . ; 4Þ;

cos p
4
þ ði�5Þp

2

� �
; sin p

4
þ ði�5Þp

2

� �h i ffiffiffi
2

p
c ði ¼ 5; . . . ; 8Þ:

8>>><
>>>:

ð8Þ
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Fig. 1. Velocities in the D2Q9 Lattice Boltzmann model.
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Here, c is the propagation speed of particles moving between a lattice node and its nearest neighbors. Fol-

lowing the procedure introduced in [15–17], this velocity is related to the thermal velocity of the fluid par-

ticles and is determined by the fluid temperature T, the Boltzmann constant kB, as well as the mass m of

these particles:
c ¼
ffiffiffiffiffiffiffiffi
kBT
vm

s
: ð9Þ
The value of the constant v is a characteristics of the LB model. For the D2Q9 model [14] used in this paper,

we have v = 1/3 [17].

The equilibrium distribution functions in (7) are given as series expansions in the local velocity u = u(x, t)
[17,22],
f eq
i ¼ f ;eq

i ðx; tÞ ¼ win 1þ ei � u
vc2

þ ðei � uÞ2

2v2c4
� u � u
2vc2

" #
ði ¼ 0; 1; . . . ; 8Þ; ð10Þ
where the weight factors wi are
wi ¼

4
9

ði ¼ 0Þ;
1
9

ði ¼ 1; . . . ; 4Þ;
1
36

ði ¼ 5; . . . ; 8Þ:

8><
>: ð11Þ
If we use the series expansion (10) in the expression of the force term which appears in the evolution Eq. (7)

and restrict the result up to first-order terms in the local velocity u, we get
1

kBT
F � ei � u½ �f eq

i ¼ win
m

F � ei � u

vc2
þ ðei � uÞei

vc4

� �
; ð12Þ
which is equivalent to the expression already derived in [17,23].

As a result of the discretization of phase space, integrals in this space are replaced by sums over the dis-

crete velocity set {ei}. Consequently, expression (3) of the local number density becomes
n � nðx; tÞ ¼
XN
i¼0

fiðx; tÞ; ð13Þ
while the local velocity (4) is replaced by
u � uðx; tÞ ¼ 1

nðx; tÞ
XN
i¼0

eifiðx; tÞ: ð14Þ
Two techniques may be used to derive the fluid equations from the Boltzmann equation (7): Grad�s method

of moments [24–26] or the Chapman–Enskog expansion [1–4,22]. When using the latter approach, the dis-

tribution functions are formally expanded as series in the Knudsen number e = cs/L, where L is the system

size
fi ¼
X1
l¼0

elf ðlÞ
i ¼ f ð0Þ

i þ ef ð1Þ
i þ e2f ð2Þ

i þ � � � ð15Þ
Two time scales and one length scale are also adopted
t ¼ e�1t1 þ e�2t2; ð16Þ



V. Sofonea, R.F. Sekerka / Journal of Computational Physics 207 (2005) 639–659 643
r ¼ e�1r1; ð17Þ

such that the time and space derivatives are expressed as
ot ¼ eot1 þ e2ot2 ; ð18Þ

rr ¼ err1 : ð19Þ

These expressions are substituted into Eq. (7) and terms involving e to zero-th, first and second order are

separated. After some algebra, the mass and momentum conservation equations are derived up to second

order in the Knudsen number
otqþ obðqubÞ ¼ 0; ð20Þ

otðquaÞ þ obðquaubÞ ¼ �oap þ mob qoaub þ qobua
� 	

þ qaa; ð21Þ
where
p :¼ nkBT ¼ vc2q ð22Þ

is the ideal gas pressure (q = mn). The Navier–Stokes equation is recovered from (21) in the incompressible

limit (obub = 0)
otua þ ubobua ¼ � 1

q
oap þ mr2ua þ aa: ð23Þ
Here, m is the physical value of the kinematic viscosity of the single component fluid
m ¼ svc2 ¼ skBT=m: ð24Þ

The above expression of the kinematic viscosity, which can also be derived by using the method of moments

[25,26], is of principal importance since it expresses the fact that the behavior of the fluid we simulate with

the LB model is independent of the discretization of the phase space (i.e., independent of N or v). How-

ever, the numerical scheme used to solve the spatial and temporal aspect of the LB model may introduce a

numerical viscosity that adds to the physical value (24) to give an apparent value of the kinematic viscosity,
as discussed in [13].
3. The upwind finite difference Lattice Boltzmann model

The set of phase space discretized Boltzmann equations (7) for the distribution functions fi ” fi(x, t) may

be solved numerically by using an appropriate finite difference scheme defined on the lattice L [13]. When

using a scheme based on characteristics, the forward Euler difference is used to compute the time derivative,
but there are several possibilities [27,28] to compute the term ei Æ $fi(x, t). We will restrict here to the first-

order upwind scheme; other finite difference schemes for LB models are discussed in [13]. Following this

scheme, the distribution functions are updated at each lattice node in accordance to
fiðx; t þ dtÞ ¼ fiðx; tÞ �
cdt
ds

fiðx; tÞ � fiðx� dsei=c; tÞ½ � � dt
s

fiðx; tÞ � f eq
i ðx; tÞ½ �

þ dt
vc2

aðx; tÞ � ei � uðx; tÞ½ �f eq
i ðx; tÞ ði ¼ 0; 1; . . .NÞ; ð25Þ
where ds is the lattice spacing and dt is the time step.

As discussed in [13], the correct mass equation (20) is recovered in the incompressible limit (constant q
and small Mach number). The apparent value of the kinematic viscosity, which enters the Navier–Stokes
equation (23) when using the first-order upwind scheme is [13]
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Fig. 2. The square lattice used for finite difference LB simulation of channel flow (d, bulk nodes; s, boundary nodes; h, ghost nodes

outside the walls). Walls are situated along the dashed lines (at half lattice spacing between boundary nodes and ghost nodes). Periodic

boundary conditions are used in the horizontal direction.
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m ¼ vc2 sþ ds
2c

� �
: ð26Þ
Fig. 2 shows the square lattice used to simulate isothermal channel flow in 2D. Application of the updating

rule (25) in the bulk nodes is straightforward. The same holds for lattice nodes where periodic boundary
conditions in the x direction apply. Special attention should be paid when applying the updating rule

(25) to the boundary nodes (i.e., those fluid nodes located near the channel wall, which have j = 1 or

j = Ny) since the distribution functions fi(x � dsei/c, t) are not defined for certain values of the index i.

The ghost nodes where the distribution functions fi(x � dsei/c, t) should be evaluated (i.e., the lattice nodes

with j = 0 or j = Ny + 1) are outside the fluid domain and we must provide appropriate handling rules.

Although this paper refers only to the upwind finite difference scheme, the rules discussed in the next section

provide the boundary conditions for a larger class of characteristics based finite difference LB models where

a single row of ghost nodes should be considered outside the walls; this class includes other schemes already
discussed in [13]: the Lax–Friedrichs scheme, the Lax–Wendroff scheme, as well as the space centered

scheme.
4. Boundary conditions

4.1. Physical considerations

In this paper, we will restrict ourselves to boundary conditions for 2D channel flow. We use an

Nx · (Ny + 2) square lattice with periodic boundary conditions in the horizontal (x) direction (Fig. 2), with

the walls placed at half lattice spacing outside boundary nodes. When using non-dimensional equations, the

channel width is L = 1 and the lattice spacing is ds = 1/Ny. Walls may be at rest or may move along the

horizontal axis x.

Gas particles may strike and reflect from walls. When a wall is at rest, the so called bounce back case is

usually considered in LB models, as well as in Lattice Gas simulations [1–4]. In this case, incident par-

ticles are reflected by the wall in the opposite direction (Fig. 3(a)). However, there are other possibilities.
If gas particles collide with an idealized wall that is perfectly smooth on the molecular scale, no shear

forces will be transmitted and their tangential momentum will be conserved. In this case, as illustrated

in Fig. 3(b), the angle of incidence is equal to the angle of reflection. This is called specular reflection

and there is perfect slip at the wall. For the opposite case, when walls are considered to be extremely

rough at the molecular scale, gas particles are assumed to reflect at some random angle that is uncorre-

lated with their angle of incidence. In this diffuse reflection case (Fig. 3(c)), the velocities of particles leav-
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Fig. 3. Boundary conditions for the distribution functions: (a) Bounce back; (b) specular reflection; (c) diffuse reflection.
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ing the wall are assumed to follow the Maxwellian distribution law [29–32]. The parameters that define

the Maxwellian distribution of the diffuse reflected gas particles are the wall velocity uwall and the wall

temperature Twall. In this paper, we deal only with isothermal systems so the wall temperature is assumed

to equal the fluid temperature T. For real walls, some gas molecules reflect diffusively while other mol-

ecules reflect specularly; this more general case may be considered by introducing an accomodation co-

efficient [5,31–33] but we shall not discuss this case here.

4.2. Implementation of boundary conditions for the distribution functions

If the node x is a boundary node (i.e., a node located on the first row near the bottom wall of the chan-

nel, like the central node in Fig. 4, whose indices are k, j, with j = 1), the updating rule (25) cannot be used

for all distribution functions fiðx; tÞ � f k;j¼1
i ði ¼ 0; 1; . . . ;NÞ since some of the values of the distribution

functions f k;j¼0
i are undefined. For the node (k, j = 1) in Fig. 4, the missing values refer to i 2 {2,5,6}.

For convenience, we will refer further to this case since the case of a node located near the top wall may

be handled in a similar way.

The missing values of the distribution functions defined in ghost nodes (j = 0) may be estimated using
one of the following procedures for the boundary conditions:

(a) Bounce back

Particles originating from the node k,1 are bounced back in the points marked L, M, R on the wall. Con-

sequently, we have
Fig. 4.

the po
f k;0
2 ¼ f k;1

4 ;

f k�1;0
5 ¼ f k;1

7 ;

f kþ1;0
6 ¼ f k;1

8

ð27Þ
j = 0
ML R

wall

k – 1 k + 1

j = 1

j = 2

j = 1j = 1

k

Boundary nodes (j = 1) and ghost nodes (j = 0) at the bottom wall. Particles originating from the node (k, j = 1) are reflected in

ints marked L, M, R on the wall.
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(b) Specular reflection

In this case, particles originated from boundary nodes (with j = 1) are reflected specularly in the wall

points L,M, R, such that
f k;0
2 ¼ f k;1

4 ;

f k�1;0
5 ¼ f k�1;1

8 ;

f kþ1;0
6 ¼ f kþ1;1

7 :

ð28Þ
(c) Diffuse reflection (version 1)

To get particles reflected diffusely at time t in the wall node point L (Fig. 4), we first note that this

point receives particles originating from lattice boundary nodes (k�1,1) and (k, 1). The distribution func-
tions of these particles mix together and redirect thereafter towards the same nodes because the discrete

character of the velocity space in LB simulations does not allow other possible directions. If we denote

by f L
5 and also f L

6 the LB distribution functions of the particles at the wall point L which, after diffuse

reflection, have the velocities e5 and e6, respectively, we may compute these distribution functions by lin-

ear interpolation of the distribution functions defined in the boundary nodes (j = 1), as well in the ghost

nodes (j = 0):
f L
5 ¼ f k�1;0

5 þ f k;1
5

2
;

f L
6 ¼ f k�1;1

6 þ f k;0
6

2
:

ð29Þ
In the updating rule (25), information on the particles diffusively reflected from the point L towards node

(k, 1) is contained in the value of f k�1;0
5 , while the information on the particles redirected towards node

(k�1,1) is contained in f k;0
6 . Because of the mixing process that takes place at the point L of the wall,

the diffusely reflected distribution functions f L
5 and f L

6 (or, equivalently, the unknown quantities

f k�1;0
5 and f k;0

6 ) should be dependent on both incoming distribution functions f k;1
7 and f k�1;1

8 . Conservation

of particle number diffusely reflected in point L requires
f k�1;0
5 þ f k;0

6 ¼ f k;1
7 þ f k�1;1

8 : ð30Þ

A second equation to be fulfilled by f k�1;0

5 and f k;0
6 may be derived from the requirement that the dif-

fusely reflected distribution functions f L
5 and f L

6 defined in at the wall point L follow the Maxwellian dis-

tribution whose mean velocity is the bottom wall velocity ubot_wall. Thus f L
5 =f

eq
5 ¼ f L

6 =f
eq
6 for u ¼ ubot wall.

In view of Eqs. (10) and (29) we obtain
f k�1;0
5 þ f k;1

5

s5
¼ f k�1;1

6 þ f k;0
6

s6
; ð31Þ
where
si ¼ wi 1þ ei � ubot wall

vc2
þ ðei � ubot wallÞ2

2v2c4
� ubot wall � ubot wall

2vc2

" #
: ð32Þ
By solving Eqs. (30) and (31), we can get values of f k�1;0
5 and f k;0

6 . A similar procedure applied to the wall

point R gives values of f k;0
5 and f kþ1;0

6 . The value of f k;0
2 may be derived from the bounce back scheme since

no particle mixing occurs at the wall node M in Fig. 4. The final results for the three ghost points needed to

update f k;j¼1
i are



V. Sofonea, R.F. Sekerka / Journal of Computational Physics 207 (2005) 639–659 647
f k;0
2 ¼ f k;1

4 ;

f k�1;0
5 ¼

s5 f k�1;1
6 þ f k;1

7 þ f k�1;1
8


 �
� s6f

k;1
5

s5 þ s6
;

f kþ1;0
6 ¼

s6 f kþ1;1
5 þ f kþ1;1

7 þ f k;1
8


 �
� s5f

k;1
6

s5 þ s6
:

ð33Þ
(d) Diffuse reflection (version 2)

We can consider that the mixing process takes place in the ghost nodes instead of the wall points L and R.
The ghost node (k, j = 0) receives particles coming from nodes (k�1, j = 1), (k, j = 1) and (k + 1,j = 1). The

distribution functions of incoming particles are f k�1;1
8 ; f k;1

4 and f kþ1;1
7 , respectively. Preservation of the total

number of particles requires the number of outcoming particles to equal the number of incoming particles

in ghost nodes
f k�1;1
8 þ f k;1

4 þ f kþ1;1
7 ¼ f k;0

5 þ f k;0
2 þ f k;0

6 ¼ nkð2Þ: ð34Þ
According to physical considerations concerning diffuse reflection, we use the fact that the distribution

functions of outcoming particles are Maxwellian. This allows us to compute the values of these functions

in the ghost nodes
f k;0
i ¼ sinkð2Þ ði ¼ 2; 5; 6Þ; ð35Þ
where coefficients si are given by Eq. (32).

(e) Diffuse reflection (version 3)

In this version of the diffuse reflection rule, the value of the distribution function f k;0
2 is derived using the

bounce back rule, while the values of the two remaining distribution functions to be computed in the ghost

node (k, j = 0) are derived using a mixing procedure similar to version 2:
f k;0
2 ¼ f k;1

4 ; ð36Þ

f k;0
i ¼ sinkð3Þ ði ¼ 5; 6Þ; ð37Þ
where coefficients si are given again by Eq. (32) and
nkð3Þ ¼ f k�1;1
8 þ f kþ1;1

7 ¼ f k;0
5 þ f k;0

6 : ð38Þ
All five procedures (a)–(e) introduced above preserve the total number of fluid particles in the lattice L:
NtotalðtÞ ¼
X
x2L

Xi¼8

i¼0

fiðx; tÞ ¼ constant: ð39Þ
This may be checked after summation of the finite difference LB equation (25) and use of the general prop-

erties of the distribution functions f r
i ; f

r;eq
i , as well as the corresponding expressions of the values of the

distribution functions in the ghost nodes.
5. Slip velocity

The problem of boundary conditions for channel flow is still an open one, especially for the case of mul-

ticomponent fluids [34–36] because of physical interactions which may occur between fluid particles and

wall particles. Although it is widely accepted that the normal component of the fluid velocity should vanish

at the walls, there are two extreme cases concerning the tangential component of the fluid velocity with
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respect to the wall: the so called free slip and the no-slip boundary conditions [5]. In the first case, the fluid

velocity relative to the wall may have a non-zero tangential component, while this component vanishes in

the second case, as the normal component always does.

The kinetic theory of gases [5,29,32,37,38] relates the tangential velocity slip at the wall uslip ” Du|wall to the

local shear through a series expansion in the mean free path k, or, equivalently, in the Knudsen number e = k/
L, where L is the reference length (i.e., the channel width). The general second-order slip condition is [5]
uslip � Dujwall ¼ ufluid jwall � uwall ¼ C1e
ou
og

����
wall

� C2e
2 o

2u
og2

����
wall

ð40Þ
where ufluidjwall is the tangential component of the fluid velocity on the wall, uwall is the wall velocity (as

mentioned in Section 4.1, walls may be at rest or may move along themselves, i.e., along the x axis in

Fig. 2) and g is the distance from the wall, measured in units of L, whose positive direction points towards

the fluid. The values of the coefficients C1 and C2 in the above expression of the slip velocity are dependent

on the kinetic models developed by various investigators [5,29,32]. The value C1 = 1 is a characteristic of

most models, including a first-order model already derived by Maxwell in 1879 [39], but the value of the
coefficient C2 is still disputed in the literature [5]. We will determine the values of the coefficients C1 and

C2 from the results of our FDLB simulations.

In accordance to Eq. (40), there is always a velocity slip at the wall when ou/ogjwall 6¼ 0, but this slip

velocity is negligible for small values of the Knudsen number e. The slip velocity becomes important only

when the Knudsen number exceeds the value e = 0.01 and the continuum hypothesis breaks down [5]. This

happens in thin channels (micro-channels), whose characteristic length (width or thickness) is comparable

to the mean free path of fluid particles. However, in the so-called slip flow domain (0.1 P e P 0.01), it is

widely recognized that the well-known Navier–Stokes equations of the continuum media mechanics may
be still used provided the no-slip hypothesis is rejected and the existence of the slip velocity is entered into

the boundary conditions [5,32]. To clarify this subject, we will consider here two well-known cases of sta-

tionary flow in micro-channels:

(a) Couette flow

Couette flow results from the steady, relative motion of the two walls in Fig. 2. As walls move along the

horizontal (x) axis, the fluid is set into motion because of the interaction with the walls. We consider the

case for which the bottom wall moves with the velocity uwall_bot = (�uw, 0) while the top wall moves with
the velocity uwall_top = (uw, 0), and search for a stationary solution of the form
ux ¼ uxðyÞ; uy ¼ 0 ð0 6 y=L 6 1Þ: ð41Þ

For this case, the incompressible Navier–Stokes equation (23) becomes, with p = constant and a = 0:
r2u ¼ 0: ð42Þ

The general form of the x component of the fluid velocity (41) is thus a linear function of the y coordinate:
uxðyÞ ¼ Aðy=LÞ þ B: ð43Þ

The coefficients A and B of this solution may be found using the boundary condition (40):
uxð0Þ ¼ �uw þ uslip ¼ �uw þ C1eA ¼ B;

uxðLÞ ¼ uw þ uslip ¼ uw � C1eA ¼ Aþ B:
ð44Þ
Thus, Eq. (43) becomes
uxðyÞ ¼
uw

1þ 2C1e
ð2y=L� 1Þ; ð45Þ
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and the magnitude of the fluid velocity at the walls
juxð0Þj ¼ juxðLÞj ¼
uw

1þ 2C1e
ð46Þ
equals the wall velocity only in the limit case e ! 0. In the opposite limit case (e ! 1), the fluid remains at

rest.

(b) Poiseuille flow

In this case, the walls are at rest (uw = 0), but the fluid moves under the action of an external force par-

allel to the walls. We will consider again the incompressible Navier–Stokes equation (23) with p = constant

and ax = a, ay = 0. When searching for a stationary solution of the form (41), (23) reduces to
mr2ux þ a ¼ 0; ð47Þ

and we get the general solution
uxðyÞ ¼ Aðy=LÞ2 þ Bðy=LÞ þ C ð48Þ

with
A ¼ � aL2

2m
: ð49Þ
The remaining coefficients B and C are found from the boundary condition (40):
uxð0Þ ¼ C1eB� 2C2e
2A;

uxðLÞ ¼ �C1eð2Aþ BÞ � 2C2e
2A:

ð50Þ
This gives the final form of the stationary solution
uxðyÞ ¼
aL2

2m
½�ðy=LÞ2 þ ðy=LÞ þ C1eþ 2C2e

2�; ð51Þ
while the fluid (slip) velocity at the wall is
uxð0Þ ¼ uxðLÞ ¼
aL2

2m
½C1eþ 2C2e

2�: ð52Þ
If we compute the mean value of the fluid velocity in the channel
�u ¼ 1

L

Z L

0

uxðyÞdy ¼
aL2

2m
1

6
þ C1eþ 2C2e

2

� �
; ð53Þ
the following characteristics of the velocity profile may be derived:
umax
�u

¼ uxðL=2Þ
�u

¼ 1=4þ C1eþ 2C2e2

1=6þ C1eþ 2C2e2
; ð54Þ

uslip
�u

¼ uxð0Þ
�u

¼ uxðLÞ
�u

¼ C1eþ 2C2e2

1=6þ C1eþ 2C2e2
: ð55Þ
For e ! 0, we get
umax

�u
¼ 1:5;

uslip
�u

¼ 0;
ð56Þ
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while for e ! 1, we get
umax

�u
¼ uslip

�u
¼ 1: ð57Þ
In order to compare with computer simulation results, we rewrite Eq. (26) in the form
m ¼ vcL eþ ds
2L

� �
¼ vcL eþ 1

2Ny

� �
; ð58Þ
where Ny is the number of lattice nodes along the characteristic length L. Eq. (51) becomes
uxðyÞ ¼ ue �ðy=LÞ2 þ ðy=LÞ þ C1eþ 2C2e
2

h i
; ð59Þ
where
ue ¼
ua

eþ 1
2Ny

ð60Þ
and
ua ¼
aL
2vc

: ð61Þ
The reference quantities ue and ua introduced above will be used in the next section to get non-dimensional

velocity profiles for Poiseuille flow.
6. Simulation results

6.1. Couette flow

For the simulation of Couette flow, we used the upwind finite difference LB model where the boundary

conditions are expressed using the three versions of the diffuse reflection technique. The bounce back tech-

nique is not appropriate for this case since that technique may be applied only when the walls are at rest. All
simulations were done with the same values of the wall velocity (uw = 0.001) and time step (dt = 0.001).

Fig. 5 shows the stationary velocity profiles we get after 100,000 time steps using the first version of the

diffuse reflection boundary condition, for Ny = 100 and various values of the Knudsen number e = cs/L (we

remember that c = 1 and L = 1 when using the non-dimensional form of LB and fluid equations). We see

that the slip velocity is negligible for e 6 0.01, since the value of the fluid velocity at the wall is practically

equal to the wall velocity uw. The increase of the slip velocity is noticeable when the Knudsen number be-

comes larger than 0.01, as expected in accordance to kinetic theories [5,29]. The stationary velocity profiles

for Couette flow were found to be well superposed when using various values of the lattice spacing ds =
L/Ny (i.e., various number of lattice nodes in the y direction across the channel), regardless the value of

the Knudsen number. To check the validity of Eq. (46) in the case of LB simulations done with the first

version of the diffuse reflection boundary condition, we plot in Fig. 6 the quantity uw/u(L) against the

Knudsen number e. The agreement between our LB simulation results and Eq. (46) with C1 = 1 is excellent.

Further simulations (not shown here) revealed that the linear dependence of uw/u(L) with respect to the

Knudsen number e, which is predicted by Eq. (46), appears to be preserved in our model even for very large

values of e. However, the validity of the model for such large values of e is uncertain and the number of time

steps necessary to get the stationary state increases dramatically with the value of e.
LB simulation results (velocity profiles) obtained with versions 2 and 3 of the diffuse reflection boundary

condition were virtually indistinguishable. However, although linear, these profiles exhibit a noticeable
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dependence on the lattice spacing ds, as shown in Fig. 7 for e = 0.1. To explain the effect of the lattice spac-

ing on the slope of these velocity profiles, we recall that in version 2 and 3 of the diffuse reflection boundary

condition, the wall velocity is actually imposed in the ghost nodes and not on the wall, as done in the first

version. Thus, if we search for the values of the coefficients A and B in Eq. (43), we really have a slightly
modified version of Eqs. (44):
uxð�ds=2Þ ¼ �uw þ uslip ¼ �uw þ C1eA ¼ �Ads=2Lþ B;

uxðLþ ds=2Þ ¼ uw þ uslip ¼ uw � C1eA ¼ Að1þ ds=2LÞ þ B;
ð62Þ
which gives
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A ¼ 2uw
1þ ds=Lþ 2C1e

; B ¼ � uw
1þ ds=Lþ 2C1e

: ð63Þ
The above expression of the A coefficient is validated by our LB simulations in Fig. 8 where the dependence

of the ratio 2uw/A against the non-dimensional lattice spacing ds/L is displayed for three values of the

Knudsen number. For convenience, in Fig. 8 we checked also Eq. (46) which is valid for the first version

of the diffuse reflection boundary condition, and we found no effect of the lattice spacing in this case.

6.2. Poiseuille flow

Fig. 9 shows the non-dimensional velocity profile u(y/L)/ua for Poiseuille flow for various values of the

relaxation time s, i.e., various values of the Knudsen number e = cs/L when version 1 of the diffuse reflec-
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tion scheme is used. These simulations were done with a constant value of the acceleration (a = 0.001) for

c = 1, L = 1. We see that the slip velocity increases with the Knudsen number e, while the parabolic velocity
profile becomes more and more flattened, as observed by other authors [5,40]. Fitting this data shows that

these velocity profiles are close to the analytical solution (51) where C1 = 1 and C2 = 0.666. Even for

e = 0.50, the largest difference between simulation results and the analytical solution (51) with the values

of C1 and C2 mentioned above, is approximately 0.5% (Fig. 9c). In Fig. 10, we show the effect of the Knud-

sen number on the quantities umax=�u and uslip=�u. The agreement with Eqs. (54) and (55) with C1 = 1 and

C2 = 0.666 is excellent, although we have no theory for this value of C2.
Since the apparent value of the kinematic viscosity m is dependent on the relaxation time s and the lattice

spacing ds [13], the value of the coefficient A given by Eq. (49) changes with the relaxation time s, i.e., with
the Knudsen number. To investigate the effect of the Knudsen number on the slip velocity in Poiseuille flow,

we performed another set of computer simulations, where the acceleration a was always adjusted in order to

keep a constant value of the reference quantity ue = 0.001 in the parabolic expression Eq. (59) of the fluid

velocity profile. In this case (Fig. 11), we get a family of parabolic profiles whose shape is identical (all

parabolae may be superposed after translation), while the slip velocity (the translation parameter) is depen-

dent on the Knudsen number. For fixed Knudsen number and the same lattice spacing, the slip velocity is
dependent on the boundary scheme (Fig. 12). To clarify this problem and to investigate also the effect of the
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lattice spacing and Knudsen number on the slip velocity, we performed a series of systematic computer runs

using the bounce back, as well as the three versions of the diffuse reflection boundary conditions introduced

in this paper. The results were compared with the following expression of the velocity profile, which is a

generalisation of Eq. (59):
uxðyÞ ¼ ue½�ðy=LÞ2 þ ðy=LÞ� þ uslip; ð64Þ

where
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uslip=ue ¼ D1

ds
2L

� �
þ D2

ds
2L

� �2

þ C1eþ 2C2e
2: ð65Þ
The form of Eq. (65) can be motivated by replacing Eqs. (50) with equations containing the fluid velocities

at the appropriate nodes in Fig. 4 to which the LB boundary conditions actually relate. This is done in

Appendix A and results in D1 = 0 and D2 = 1 for diffuse reflection version 1 and D1 = D2 = 1 for diffuse

reflection versions 2 and 3. The vanishing value of the D1 coefficient for the version 1 is an effect of the
first-order interpolation procedure used to compute the values of the distribution functions in the ghost

nodes.

Fig. 13 shows the effect of the Knudsen number on the slip velocity for constant lattice spacing

(ds = 0.01) while Fig. 14a, b show the effect of the lattice spacing on the slip velocity for constant Knudsen

number. Table 1 shows the values of the coefficients in Eq. (65), that match the graphical results in Figs. 13

and 14. Although the value D1 = 0 is not a surprise for the bounce back scheme (in fact, this value matches

other authors [3,41]), the vanishing value of the coefficient C1 which is observed in the case of this scheme
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Fig. 14. Effect of the lattice spacing on the slip velocity in Poiseuille flow with ue/2m = 0.001, for two values of the Knudsen number: (a)

e = 0.001; (b) e = 0.010.

Table 1

Values of the coefficients in Eq. (65) as suggested by LB simulation of Poiseuille flow using the boundary conditions introduced in this

paper

C1 C2 D1 D2

Bounce back 0 0.666 0 1

Diffuse reflection – version 1 1 0.666 0 1

Diffuse reflection – versions 2 and 3 1 0.666 1 1
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does not agree with the widely accepted value C1 = 1 derived in kinetic theory [5,29,32,37]. The values of the

coefficients C1 and C2 are the same for all versions of the diffuse reflection boundary condition because of

the kinetic mechanism involved in the diffuse reflection process.
7. Conclusions

In this paper, we introduced three procedures to handle the diffuse reflection boundary conditions in a

two dimensional FDLB model. The model was subsequently used to simulate the stationary fluid flow be-

tween parallel plates. For both Couette and Poiseuille flow, we found evidence of fluid slip near the walls

when using the three procedures for diffuse reflection boundary conditions. For Poiseuille flow, the slip

velocity was also present when using the bounce back scheme widely used in the LB literature. Systematic

investigations were done to study the effect of the Knudsen number as well as of the lattice spacing on the
magnitude of the slip velocity in the stationary regime.

The slip velocity was found to be significant when the Knudsen number becomes larger than 0.01, as

expected in accordance to kinetic theories. For constant lattice spacing, the slip velocity is expressed as a

second-order polynomial in the Knudsen number e. When using the diffuse reflection boundary condition,

the coefficient C1 of e in this polynomial was found to be always equal to 1, a result which is in accordance

to Maxwell�s theory for an ideal gas. This coefficient is found to vanish when using the bounce back bound-

ary condition to simulate the Poiseuille flow.

In the case of the Poiseuille flow, the bounce back and the version 1 of our procedure to handle the dif-
fuse reflection boundary condition give a second-order dependence of the slip velocity with respect to the

lattice spacing ds when the Knudsen number is constant. Versions 2 and 3 of the diffuse reflection procedure

give both a first order and a second-order dependence on the lattice spacing. This can be related to the fact

that for versions 2 and 3, the thermal mixing occurs in the ghost nodes. We conclude that version 1, in

which the diffuse reflection occurs at a half lattice spacing outside the boundary nodes, gives the best results,

a realistic dependence on Knudsen number and only a weak dependence on the lattice spacing. This is the

main result of our systematic study and justifies the use of version 1 of the diffuse reflection boundary con-

dition for further applications of FDLB models.
Implementation of the diffuse reflection boundary condition allows one to use LB models for the inves-

tigation of flow phenomena at the microscopic level, which are important for the development of micro-

electro-mechanical-systems (MEMS).
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Appendix A

To clarify the values of the D coefficients for all versions of the diffuse reflection boundary condition, we

recall that, for version 1 we have (in the stationary state)
uxð0Þ ¼
1

2
uxðds=2Þ þ uxð�ds=2Þ½ �;

uxðLÞ ¼
1

2
uxðL� ds=2Þ þ uxðLþ ds=2Þ½ �:

ðA:1Þ
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After introducing the above expressions in Eqs. (50) and solving for the coefficients B andC in (48), we get
B ¼ �A;

C ¼ �A
ds
2L

� �2

þ C1eþ 2C2e
2

" #
:

ðA:2Þ
For versions 2 and 3, Eqs. (50) are replaced by
uxð�ds=2Þ ¼ C1eB� 2C2e
2A;

uxðLþ ds=2Þ ¼ �C1eð2Aþ BÞ � 2C2e
2A;

ðA:3Þ
which give
B ¼ �A;

C ¼ �A
ds
2L

� �
þ ds

2L

� �2

þ C1eþ 2C2e
2

" #
:

ðA:4Þ
In the stationary state, we should have ux(0) = ux(L) = uslip when using the bounce back boundary con-

dition. From Eq. (A.1) we get, after using Eqs. (64) and (65),
uxð0Þ ¼
1

2
uðds=2Þ þ uð�ds=2Þ½ � ¼ D1

ds
2L

þ ðD2 � 1Þ ds
2L

� �2

þ C1eþ 2C2e
2: ðA:5Þ
The relation above should be valid for arbitrary lattice spacing ds. This requires D1 = 0 and D2 = 1. The

same result is recovered when using ux(L) = 0 and (A.1).
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